(1)针对自动驾驶拟人化决策需要识别驾驶风格的需求, 基于客观驾驶数据和主观问卷分析了驾驶风格,提出了 种驾驶风格分类模型。 (2)针对驾驶员对驾驶安全性、舒适性和行车效率的需求, 分别基千深度Q网络(Deep Q Network, DQN)和优势演员评论家(Advantage Actor Criti c, A2C)两种深度强化学习算法建立了决策模型。 (3)针对当前自动驾驶决策不够拟人化的问题,基千表现更好的DQN决策模型提出了一种结合驾驶风格的拟人化决策模型。
1
精品--基于深度强化学习的部分计算任务卸载延迟优化
2024-02-05 23:31:06 4KB
1
本文来自于网络,本文主要介绍了如何用深度强化学习来展示TensorFlow2.0的强大特性,希望对您的学习有所帮助。在本教程中,我将通过实施AdvantageActor-Critic(演员-评论家,A2C)代理来解决经典的CartPole-v0环境,通过深度强化学习(DRL)展示即将推出的TensorFlow2.0特性。虽然我们的目标是展示TensorFlow2.0,但我将尽最大努力让DRL的讲解更加平易近人,包括对该领域的简要概述。事实上,由于2.0版本的焦点是让开发人员的生活变得更轻松,所以我认为现在是使用TensorFlow进入DRL的好时机,本文用到的例子的源代码不到150行!代码可以
2023-11-26 20:25:51 396KB
1
改代码对应的文章:Multi-Agent Deep Reinforcement Learning for Task Offloading in Group Distributed Manufacturing Systems(资源里包含PDF文章) 含有可运行的pytorch代码,调试多次,实测可运行 包括大规模数据集用来仿真实验 算法:多智能体深度强化学习 Actor-Critic
2023-10-20 09:49:48 899.23MB pytorch pytorch 边缘计算
1
《21个项目玩转深度学习-基于tensorflow的实战详解》项目20源码,深度强化学习:Deep Q learning
2023-05-06 10:37:23 564KB 深度学习 tensorflow 深度强化学习 Deep
1
深度强化学习的方法实现频谱共享。频谱资源是一种有限资源。在自适应的实现频谱共享方面,DRL与频谱共享结合是一个十分有潜力的方向。
2023-04-19 09:21:27 942KB spectrumsharing 共享 深度强化学习 DRL
1
MiVeCC_with_DRL 这是一种多路口车辆合作控制(MiVeCC)方案,可实现3 * 3无信号交叉口中车辆之间的协作。 我们提出了一种结合启发式规则和两阶段深度强化学习的算法。 启发式规则使车辆通过交叉路口而不会发生碰撞。 基于启发式规则,DDPG用于优化车辆的协同控制并提高交通效率。 仿真结果表明,与现有方法相比,所提算法在不发生碰撞的情况下可将多个路口的出行效率提高4.59倍。 一种基于端边云计算的多路口车辆协同控制| 先决条件 Linux 或 macOS Python 3 MATLAB 2017b CPU或NVIDIA GPU + CUDA CuDNN Python模块 numpy==1.16.2 opencv-contrib-python == 3.4.2.16 opencv-python==4.2.0.32 张量流==1.12.0 matplotlib=
2023-04-08 09:27:17 15.22MB Python
1
目前,大多数 DRL 模型事实上还停留在传统的博弈论层面,例如**纳什均衡或零和游戏**等。但随着DRL的发展,传统博弈论方法已经逐渐呈现出不足之处,而同时则有一些新的博弈论方法被纳入到人工智能的程序当中。雷锋网公众号介绍三种深刻影响 DRL 的「新」博弈论方法:平均场博弈(Mean Field Games,MFG);随机博弈(Stochastic games);进化博弈(Evolutionary Games,EGT)。本文是对公众号介绍文章的消化再整理:标注按字者,加注标签;关键地方,有粗体和下划线。适合快速而较系统的了解博弈发展状况的读者。
2023-04-08 01:04:46 11KB 深度强化学习DRL 博弈论
1
DRLND-project-2 该存储库包含项目2的实现。 项目详情 到达者 该项目实现了PPO,用于解决Unity环境中的连续控制问题-使机械臂跟随旋转的航点-在具有20个代理的变体版本上。 最终执行记录: 当手臂末端位于目标球体内/目标航路点的固定范围内时,每个代理随时间累积的奖励。 代理的目标是遵循路标。 对于每个代理,状态空间具有33个维度,而动作空间具有4个连续维度。 该任务是情节性的,当特工在100个连续情节中获得+30的平均分数时,该任务被认为已解决。 履带式 该项目的可选/额外/挑战部分是控制爬虫。 在面对正确方向和该方向的速度时,每个四脚实体尝试遵循目标目标时,每个代理随时间累积的奖励。 该环境具有12个代理,每个代理以129维观察状态,并以20维控制动作。 该环境基于。 入门 依存关系 可以根据依赖关系来设置此项目的依赖关系。 以下说明将引导您逐步设置该
1
RL4J:Java 强化学习 有关 RL4J 的支持问题,请联系 。 RL4J 是一个与 deeplearning4j 集成并在 Apache 2.0 开源许可下发布的强化学习框架。 DQN(带双 DQN 的深度 Q 学习) 异步强化学习(A3C,异步 NStepQlearning) 低维(信息数组)和高维(像素)输入。 一篇有用的博客文章,向您介绍强化学习、DQN 和 Async RL: 快速开始 安装 可视化 厄运 Doom 还没有准备好,但如果你喜欢冒险,你可以通过一些额外的步骤让它工作: 您将需要 vizdoom,编译本机库并将其移动到项目根目录中的文件夹中 export MAVEN_OPTS=-Djava.library.path=THEFOLDEROFTHELIB mvn compile exec:java -Dexec.mainClass="YOURMAINCL
1