alphago与人工智能.ppt该文档详细且完整,值得借鉴下载使用,欢迎下载使用,有问题可以第一时间联系作者~
2022-07-01 13:03:47 5.7MB 文档资料
经典的2018年的Alphago Zero自我对弈50盘,格式为sgf,需要下载MultiGo之类的棋谱查看软件打开
2022-04-25 14:57:01 81KB Alphago Alphago Zero 围棋
1
随着DeepMind公司开发的AlphaGo升级版master战胜围棋世界冠军,其背后应用的强化学习思想受到了广泛关注,也吸引了我想一探究竟为什么强化学习的威力这么大。早在2015年,DeepMind就在youtube上发布了围棋程序master的主要作者David Silver主讲的一套强化学习视频公开课,较为系统、全面地介绍了强化学习的各种思想、实现算法。其一套公开课一共分为十讲,每讲平均为100分钟。其中既包括扎实的理论推导,也有很多有趣的小例子帮助理解,对于理解强化学习来说是一套非常好的教程。我在跟随这套教程学习的过程中一边听讲、一边笔记,最后编写代码实践,终于算是对强化学习的概念终于有了初步的认识,算是入门了吧。为了巩固加深自己的理解,同时也能为后来的学习者提供一些较为系统的中文学习资料,我萌生了把整个公开课系统整理出来的想法。
2022-04-16 14:07:47 2.4MB 算法 学习 深度学习 强化学习
1
Google的deepmind团队发表在nature上有关alphago的论文,包含原有的英文版,我翻译的中文版,以及一个20分钟对alphago工作原理的讲述。
2022-03-01 08:28:24 31.32MB deepmind alphago
1
AlphaGo算法原理概述,阿尔法围棋(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发
2022-01-17 23:02:01 2.89MB 人工智能 AlphaGO 大数据 谷歌
1
AlphaGo-阿尔法Go 源码 使用 Python 和 JS 编写
2022-01-15 19:25:09 208KB AlphaGo RocAlphaGo 源码
1
这是AlphaGo主要部分的纯Python实现
2022-01-14 16:03:41 20.44MB Python开发-机器学习
1
2016年初, AlphaGo战胜李世石成为人工智能的里程碑事件. 其核心技术深度强化学习受到人们的广泛关.注和研究, 取得了丰硕的理论和应用成果. 并进一步研发出算法形式更为简洁的AlphaGo Zero, 其采用完全不基于.人类经验的自学习算法, 完胜AlphaGo, 再一次刷新人们对深度强化学习的认知. 深度强化学习结合了深度学习和.强化学习的优势, 可以在复杂高维的状态动作空间中进行端到端的感知决策. 本文主要介绍了从AlphaGo到Alpha-.Go Zero的深度强化学习的研究进展. 首先回顾对深度强化学习的成功作出突出贡献的主要算法, 包括深度Q网络.算法、A3C算法, 策略梯度算法及其它算法的相应扩展. 然后给出AlphaGo Zero的详细介绍和讨论, 分析其对人工智.能的巨大推动作用. 并介绍了深度强化学习在游戏、机器人、自然语言处理、智能驾驶、智能医疗等领域的应用进.展, 以及相关资源进展. 最后探讨了深度强化学习的发展展望, 以及对其他潜在领域的人工智能发展的启发意义.
2021-12-06 10:38:35 1.62MB 研究论文
1
2021-11-28 23:13:47 1.9MB AlphaGo
1